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Warming climate challenges breeding:

Nature Plants volume 7, pages1164-1165 (2021)

Year

1‘ 2(?0 4l|)0 S(IJO 8(‘)0 10|00 1290 14|00 1690 18‘00 20|00
.,_é? 424 |l Reconstructed temperatures (orange)  Error range (vellow) || Observed temperatures (purple) 2023
8
. 5 8 246
. £ ‘
P = G + climate + climate g
g9
5§
5
s
s
227 536
P= G+ E + GEI E. E, *.]
-3 Baseline period (1850-1900) —
Ay inda M Summer Warmth

y Jan Esper etal., in Nature. Published online May 14, 2024

b The Summer of 2023 Was the Hottest in 2000 Years

Breeding crops for climate
resilience with Genotype

by Environment
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https://www.scientificamerican.com/article/the-summer-of-2023-was-the-hottest-in-2-000-years/

What does changing climate mean for Ideal RSA?
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Outline

« Objectives

« RSA Breeding history

« Breeding Progress

« Commercialization of RSA?



Root System Architecture (RSA)
Breeding

Objectives:

Develop and release germplasm/cultivars with
specific RSA for different environments with

changing climates.
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RSA Cycle 0 (C,): for fibrous root mass

UMN2896

UMN2494

UMN2892

» A composite of 9
moderately dormant
cultivars and
experimental
populations for root
system architecture
(RSA)

» A composite of 10
early nondormant
cultivars and
experimental
populations selected
for increased root

Nitrogen
concentration

» A composite of 8
dormant experimental
populations selected
for disease
resistance to

phytophthora and

Aphanomyces root
rots and root-lesion

nematode & fibrous
root mass

» A composite of 8

dormant experimental
populations selected
for differences in
biological N fixation
and fibrous root
mass

Intermating
for C, seed

Intermating
for C, seed

Intermating
for C, seed

Intermating
for C, seed




RSA Cycle 1 (C,): for fibrous root mass
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keep 5,400 plants and
dug 5,400 roots
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RSA Genetic gain is higher than biomass
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What has been the genetic gain of RSA

0.08/4.5
=1.78%

breeding in the past 20 years?

Phenotyping seedlings for selection of root system architecture in
alfalfa (Medicago sativa L.) Plant Methods volume 17,
Article number: 125 (2021)
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Genetic gain of RSA by
Principal Component Analysis
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Genome-wide association
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Machine Learning identifies more than
additive effect makers

* Machine learning algorithms like support
vector machine (SVM) can be used to 8
obtain variable importance (VI). 0

* VIby SVM ranks the variables (markers)
from 0 to 100 according to their L

importance.
* Markers with high VI could agree or not
with markers identified by GWAS. c 100
> /91

Marker FS LD LN TD Z 50

chr5.1 3769336 100 99 60 37 .._;I

chr5.1 4247500 75 100 68 37 @ 25

chr5.1 70800283 61 74 100 100 — 0
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Genomic selection

Cycle Fibrous Arch Pop Phen&Geno|| Geno Total
1. Select a training population 0 0 UMN_2892 140 182 322
(Phen&Geno column) 2 LF T  UMN 2963 133 181 314
2. Run genomic prediction H?OC.iel(S) 2 HF B UMN_2966 146 177 323

3. Obtain scores for the predictions

4. Run the best model by training and testing the 3 HF B UMN_3233 182 140 322
population (Geno column) 3 LF T UMN 3234 187 134 321
4 HF B UMN 4561 187 136 323
4 LF T UMN 4563 213 109 322

Total | 1,188 (53%) 1,059 (47%) | 2,247
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Genomic selection a
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- RSA associates with yield and N fixation

Nitrogen fixation
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2 , soil erosion
credit:?$SS

Fibrous roots for water, fertilizer
use efficiency: ?55SS

Carbon credit: ? §SS
Nitrogen credit: ?55S




1. Alfalfa RSA was maintained across environments and heritable.
2. The genetic gain of RSA selection is about 12% per breeding cycle.

3. 14 QTLs were identified for the RSA traits

. GS prediction accuracy ranged from 0.45 to 0.81

. ML identified more common markers than the GWAS.
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Digital alfalfa RSA phenotyping via Al technology

RSA phenotyping
challenges: consistency
across labs and subjective
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Objective Phenotyping of Root System Architecture Using
Phenotyping seedlings for selection of root system Image Augmentation and Machine Learning in Alfalfa

architecture in alfalfa (Medicago sativa L.) (Medicago sativa L.)
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Phase 1: Use three ML: RF, SVM
& GBM, found the most
informative parameter to select

Phase 2: Use computer vision
and deep neural network to
objectively classify RSA types

Generative Al
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Phase lll: Deep layers + generative
Al to generate ideal RSA




Space and sward plots
were planted for root
plasticity study, and
2,000 roots from each of
the four populations will
be dug for divergent
selection for Cycle # 6.
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